4.5 Article

Electrochemical degradation of naproxen from water by anodic oxidation with multiwall carbon nanotubes glassy carbon electrode

期刊

WATER SCIENCE AND TECHNOLOGY
卷 79, 期 3, 页码 480-488

出版社

IWA PUBLISHING
DOI: 10.2166/wst.2019.070

关键词

anodic oxidation; degradation pathway; functionalization; multiwall carbon nanotubes; naproxen

资金

  1. Spanish Government [CTQ2011-29272-C04-02]
  2. Government of the Principality of Asturias

向作者/读者索取更多资源

Naproxen (NPX) degradation was investigated by anodic oxidation both at constant potential and by cyclic voltammetry, using this last technique for optimizing reaction conditions and catalyst properties. Three multiwall carbon nanotubes (MWCNTs)-promoted electrodes were used (MWCNT, MWCNT-COOH and MWCNT-NH2) and a two steps oxidation process was observed in all the cases. At the optimized conditions (volume of MWCNT = 15 mu L), the influence of the scan rate indicates the diffusion-adsorption control of the process. Likewise, the kinetic study of NPX degradation at fix potential, considering two different stirring speeds (250 and 500 rpm), indicates that degradation rate increases with the stirring speed. After 20 h, NPX is degraded even an 82.5%, whereas the mineralization reaches almost 70%, as it was obtained from total organic carbon analysis. The pH effect was also analysed, in the range 5-11, observing a positive effect at low pH. Concerning the surface chemistry of the electrode, MWCNT-NH2, with the highest isoelectric point (4.70), is the most promising material due to the improved interactions with the reactant. From these observations, a pathway is proposed, which includes two steps of electrochemical oxidation followed by subsequent oxidation steps, until mineralization of the NPX, attributed mainly to active chlorine species and center dot OH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据