4.7 Article

A Novel Approach for Prediction of Monthly Ground Water Level Using a Hybrid Wavelet and Non-Tuned Self-Adaptive Machine Learning Model

期刊

WATER RESOURCES MANAGEMENT
卷 33, 期 4, 页码 1609-1628

出版社

SPRINGER
DOI: 10.1007/s11269-019-2193-8

关键词

Groundwater; Self-adaptive extreme learning machine; Uncertainty analysis; Wavelet transform; Artificial neural network; Support vector machine

向作者/读者索取更多资源

In recent decades, due to groundwater withdrawal in the Kabodarahang region, Iran, Hamadan, hazardous events such as sinkholes, droughts, water scarcity, etc., have occurred. This study models groundwater level (GWL) of the Kabodarahang region using two novel techniques including Self-Adaptive Extreme Learning Machine (SAELM) and Wavelet-Self-Adaptive Extreme Learning Machine (WA-SAELM). Using the stepwise selection as different lags along with different input combinations, ten different SAELM and WA-SAELM models were developed. First, the best activation function is chosen for numerical models. After that, GWL values were normalized to equalize the values and enhance speed and accuracy of modeling. Then, an optimized mother wavelet is selected in order to simulate GWLs. Next, the best model was introduced as the superior model in which values of the correlation coefficient (R), Root Mean Squared Error (RMSE) and Nash-Sutcliffe efficiency coefficient (NSC) were obtained 0.969, 0.358 and 0.939, respectively. In addition, the results of the superior model are compared with classical neural network models such as Artificial Neural Network (ANN), Wavelet-Artificial Neural Network (WA-ANN), Support Vector Machine (SVM) and Wavelet-Support Vector Machine (WA-SVM). Among all models, WA-SAELM approximated GWLs with higher accuracy. Furthermore, based on the results obtained from an uncertainty analysis, the superior model was identified as a model with an underestimated performance. Additionally, an explicit and practical matrix was proposed for computing GWLs. Finally, the matrix was validated for another piezometer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据