4.6 Article

Quantitative determination of chlorides by molecular laser-induced breakdown spectroscopy

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.sab.2018.12.009

关键词

LIBS; Molecular LIBS; Chloride contamination; Quantification

资金

  1. German Federal Ministry for Economic Affairs and Energy (BMWi), ZIM project grant [KF26821030F4]

向作者/读者索取更多资源

The presented work reports on an improved analysis of chlorides in cement and concrete using molecular LIBS. The quantitative determination of the atomic chlorine emission requires sophisticated setups under helium atmosphere and specialized spectrometers. Molecular LIBS can be performed with standard spectrometers and without additional buffer gas. In a LIBS plasma of chloride contaminated cement or concrete atomic chlorine and calcium form calcium-mono-chloride (CaCl) radicals which will be used for the quantification of chlorides. By calculating the intensity ratio of chlorine dependent and independent molecular band emission the standard deviation of the intensity ratio compared to the absolute species emission can be reduced by a factor of 5. Air purging further reduces the total standard deviation by two-thirds compared to measurements in ambient air without purging. A linear calibration with a limit of detection and limit of quantification complying with the threshold of a critical chloride contamination in concrete is determined. Spatially and temporally resolved measurements of different fixed concentrations of chloride are shown to proof the homogeneity of reference samples. In order to determine the diffusion process of the chloride contamination measurements on a drilling core are presented. As supplemental method for micro analysis, spatially resolved energy dispersive X-ray (EDX) measurements are performed. EDX can help to reveal the atomic distribution in a hydrated sample on a scale much smaller than the spot size of the laser. Thereby, relevant reaction partners for the molecular formation could be identified.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据