4.4 Article Proceedings Paper

Pressure-Transient Responses of Fractures With Variable Conductivity and Asymmetric Well Location

期刊

SPE RESERVOIR EVALUATION & ENGINEERING
卷 22, 期 2, 页码 745-755

出版社

SOC PETROLEUM ENG
DOI: 10.2118/190884-PA

关键词

-

资金

  1. Petroleum Technology Development Fund
  2. Energi Simulation

向作者/读者索取更多资源

Fractures often influence production in hydrocarbon reservoirs, yet the pressure transients observed in the wells might not show the conventional well-test signatures. In this case, the effect of fractures on production would be misinterpreted or even completely missed. The heterogeneous nature of fractured reservoirs makes them difficult to characterize and develop. In addition, the location of a producer within the fracture network also affects the pressure response; however, conventional well-test analysis assumes that the producer is located in symmetrical fracture networks. In this paper we investigate the effects of variations in fracture conductivity and location of the producer in the fracture network on the pressure-transient responses. To overcome the limitations of the dual-porosity (DP) model, this study uses a discrete fracture/matrix (DFM) modeling technique and an unstructured-grid reservoir simulator to generate pressure transients in all analyzed fracture networks. Our rigorous and systematic geoengineering work flow enables us to correlate the pressure transients to the known geological features of the simulated reservoir model. We observed that the simulated pressure transients vary significantly depending on the location of the producer in the fracture network and the properties of the fractures that the producer intercepts. Our findings enable us to interpret some unconventional features of intersecting fractures with variable conductivity. We observed that the behavior of two intersecting fractures, in which the well asymmetrically intercepts a finite-conductivity fracture, can be similar to that of a well intercepting a fracture in a connected fracture network with uniform fracture conductivity. Furthermore, a well intercepting a finite-conductivity fracture in naturally fractured reservoirs (NFRs) with both finite- and infinite-conductivity fractures would yield a DP response (V-shape) that might otherwise be absent if the fracture network is assumed to have uniform conductivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据