4.6 Article

Wirelessly Powered Microchips for Mapping Hydraulic Fractures

期刊

SPE JOURNAL
卷 24, 期 4, 页码 1830-1838

出版社

SOC PETROLEUM ENG
DOI: 10.2118/194491-PA

关键词

-

向作者/读者索取更多资源

The onset of the era of interne of things and artificial intelligence comes with the ever-growing demand for self-sustaining and efficient sensors. Sensors based on complementary metal oxide semiconductors (CMOSs) have attracted significant attention in the implementation of distributed sensor systems for a vast number of applications because of their economical and complex integration benefits. In this work, we report CMOS-based energy-harvesting chips as wireless nodes for mapping hydraulic fractures during the shale gas extraction process. The CMOS chips are tested in a custom benchtop core-holder chamber that emulates a downhole environment. An induction coil, sized at 5 x 5 mm, connected to a custom CMOS chip, is used as a receiver inside the core holder to harvest electromagnetic (EM) energy transmitted by an external antenna. On the basis of the custom core-holder experiment, it is shown that encapsulated CMOS chips are able to harvest EM energy and thereby operate wirelessly. The receiver has a resonance frequency of 198 MHz. The CMOS chip is equipped with an integrated power management unit (PMU), energy-harvesting unit, and a signal-generation block. The CMOS chip inside the chamber produces an output signal with a frequency proportional to the harvested power. By measuring the frequency of the output signal produced by the chip, we are able to localize the chips within the rock inside the custom core holder.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据