4.5 Article

Impact of tillage intensity on clay loam soil structure

期刊

SOIL USE AND MANAGEMENT
卷 35, 期 3, 页码 388-399

出版社

WILEY
DOI: 10.1111/sum.12501

关键词

air permeability; specific energy input; structural stability; tillage intensity control

向作者/读者索取更多资源

Soil structure and structural stability are key parameters in sustainable soil management and optimum cropping practices. This study aimed to improve the knowledge of potential precision tillage practices by characterizing the effect of varied tillage intensities on structural properties of a clay loam soil. An experiment with seedbed preparation was conducted using a power take-off-driven rotovator equipped to measure torque and angular velocity and with operational speed (OS) and rotational speed (RS) as main factors. Effects of soil coverage prior to tillage and wheeling directly after tillage were measured at one combination of OS and RS. The soil was sampled at 0-80 mm depth. Under slow OS (2.9 km hr(-1)) compared with fast OS (6.3 km hr(-1)), specific energy input was greater (116 and 52 J kg(-1) on average, respectively), and it increased with RS. Wheeling resulted in larger aggregate diameter right after tillage (at T1; 56 mm as geometric mean compared with 9 mm), with 42 times smaller geometric mean of air permeability 45 days after tillage (at T2) and with greater soil dispersibility at T2. Highly significant correlations were observed between soil dispersibility and energy input, specific surface area of aggregates, fractions of small (<4 mm) and medium (8-16 mm) aggregates, and geometric mean diameter. Slow OS combined with fast RS showed significantly greater air permeability than all other treatments. The results suggest that there is a potential for controlling soil structure in seedbed preparation by minimizing compaction from traffic and adapting site-specific control of rotovation intensity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据