4.7 Article

Carbon-dot-based ratiometric fluorescence glucose biosensor

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 282, 期 -, 页码 719-729

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2018.11.055

关键词

Carbon dot; Biosensor; Ratiometric; Fluorescence; Glucose; Enzyme

资金

  1. National Research Foundation of Korea [2017R1A2B2006818]
  2. National Research Foundation of Korea [2017R1A2B2006818] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

A ratiometric fluorescence glucose biosensor based on carbon dots (CDs) and rhodamine 6G (Rh6G) was developed both as an aqueous solution and as a crosslinked poly(acrylic acid) solid-state film. A ratiometric fluorescence color change was realized by fluorescence quenching due to the bienzymatic reaction of glucose oxidase (GOx) and horseradish peroxidase (HRP) with glucose. When excited at 360 nm, the blue fluorescence emission of the CDs, prepared by a solvothermal method with citric acid and ethylene diamine, was quenched by the bienzymatic reaction with glucose, whereas the fluorescence of Rh6G was inert to glucose. Thus, a ratiometric fluorescence color change from blue to green was observed as the glucose concentration increased. The optimized CD/Rh6G/GOx/HRP aqueous solution showed a linear range of 0.1-500 mu M with a limit of detection (LOD) of 0.04 mu M, good selectivity for glucose over the major ingredients in human blood and could be used with human blood serum. A stable solid-state biosensor film was fabricated by immobilization of CD/Rh6G/GOx/HRP in the hydrogel film prepared by ultraviolet curing of a mixture of acrylic acid and diacrylated poly(ethylene glycol) (70:30, w/w). Compared to the CD/Rh6G/GOx/HRP aqueous solution, the hydrogel film showed a similar ratiometric fluorescence color change, sensitivity (linear range of 0.5-500 mu M with an LOD of 0.08 mu M), and selectivity. Further, the solid-state glucose biosensor film was inherently stable and could be used whenever needed, overcoming the instability of the aqueous solution (owing to aggregation, enzyme denaturation, etc.). These ratiometric biosensors increase the ability to detect glucose using the naked eye compared to simple turn-on or turn-off modes. Thus, this approach expands the potential applications of CDs in biosensors to provide more convenient and practical detection methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据