4.6 Article

LiDAR-Based 3D Scans of Soil Surfaces and Furrows in Two Soil Types

期刊

SENSORS
卷 19, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/s19030661

关键词

3D soil surface; microtopography; pinboard; furrow cross-section; trailing shoe; precision agriculture; SICK

资金

  1. Danish Innovation Fund [7038-00231B]
  2. Ministry of Environment and Food of Denmark

向作者/读者索取更多资源

Soil surface measurements play an important role in the performance assessment of tillage operations and are relevant in both academic and industrial settings. Manual soil surface measurements are time-consuming and laborious, which often limits the amount of data collected. An experiment was conducted to compare two approaches for measuring and analysing the cross-sectional area and geometry of a furrow after a trailing shoe sweep. The compared approaches in this study were a manual pinboard and a Light Detection and Ranging (LiDAR) sensor. The experiments were conducted in coarse sand and loamy sand soil bins exposed to three levels of irrigation. Using the LiDAR, a system for generating 3D scans of the soil surface was obtained and a mean furrow geometry was introduced to study the geometrical variations along the furrows. A comparison of the cross-sectional area measurements by the pinboard and the LiDAR showed up to 41% difference between the two methods. The relation between irrigation and the resulting furrow area of a trailing shoe sweep was investigated using the LiDAR measurements. The furrow cross-sectional area increased by 11% and 34% under 20 mm and 40 mm irrigation compared to non-irrigated in the coarse sand experiment. In the loamy sand, the cross-sectional area increased by 17% and 15% by irrigation of 20 mm and 40 mm compared to non-irrigated measured using the LiDAR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据