4.7 Article

Terrestrial organic matter increases zooplankton methylmercury accumulation in a brown-water boreal lake

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 674, 期 -, 页码 9-18

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.03.446

关键词

Allochthony; Browning; Climate change; Fatty acids; Mercury. Organic matter

资金

  1. Norwegian Research Council
  2. CLIMER project (RCN project) [243644]
  3. Natural Sciences and Engineering Research Council of Canada Discovery Grant [04537-2014]

向作者/读者索取更多资源

Increases in terrestrial organic matter (tOM) transport from catchments to boreal lakes can affect methylmercury (MeHg) accumulation in aquatic biota both directly by increasing concentrations of aqueous MeHg, and indirectly through effects on MeHg bioavailability and on energy pathways in the lower food web. We carried out a detailed seasonal study of water chemistry, zooplankton diet, and MeHg accumulation in zooplankton in two lakes with contrasting tOM concentrations. Between-lake differences explained 51% of the variability in our water chemistry data, with no observed effect of season or sampling depth, contrary to our expectations. Higher tOM was correlated with higher aqueous Hg concentrations, lower areal pelagic primary productivity, and an increased contribution of terrestrial particles to pelagic particulate organicmatter. Based on dietary marker analysis (delta C-13, delta N-15, and fatty acid [FA] composition), zooplankton diet was strongly linked to feeding mechanism, with dietary reliance on phytoplankton highest in the selective-feeding calanoid copepods, and lowest in filter feeding cladocerans. Zooplankton dietary reliance on phytoplankton and their concentrations of high-quality lipids, including polyunsaturated fatty acids, were higher in the clear-water lake than in the brown-water lake, where bacterial and terrestrial food sources were more prevalent. MeHg was highest in zooplankton from the brown-water lake, with highest concentrations in the 200-500 mu m zooplankton size fraction for both lakes. Contrary to our expectations, there was no effect of season on zooplankton dietary markers or MeHg. Our results suggest that, overall, higher tOM results in higher MeHg concentrations in water and zooplankton, and reduces zooplankton dietary reliance on phytoplankton. Increased tOM thus leads to a decrease in the nutritional quality of zooplankton (i.e. higher MeHg concentrations, and lower concentrations of essential fatty acids), which may cascade up the food web with negative implications for higher trophic levels. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据