4.7 Article

Selective adsorption and bioavailability relevance of the cyclic organics in anaerobic pretreated coal pyrolysis wastewater by lignite activated coke

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 653, 期 -, 页码 64-73

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2018.10.331

关键词

Lignite activated coke; Coal pyrolysis wastewater; Selective adsorption; Bioavailability

资金

  1. National Key Research and Development Program - China [2017YFB0602804]

向作者/读者索取更多资源

This study originally investigated the selective adsorption of cyclic organics in APCPW by LAC, corresponding to the change of the bioavailability. As a product from low rank coal, LAC showed more oxygen (O)-containing groups and mesoporous structure than PAC. Adsorption mechanisms were analyzed by equilibrium isotherms and kinetics models combined with physicochemical properties of adsorbent and adsorbates. The results indicated that selectivity of LAC was dominated by chemical interaction and its mesoporous, and was enhanced by hydrophobicity of adsorbates. In addition, PAC and LAC were applied for the treatment of APCPW. Compared with PAC, LAC adsorption exhibited superior removal efficiency of Tph, TOC and TN at 85.90%, 91.15% and 51.64%, respectively. Furthermore, preferential adsorption of biotoxic and bioresistant cyclic organics by LAC was further proved by GC-MS analysis, resulting in increased bioavailability of APCPW. Specifically, LAC exerted sustained detoxication capacity until 86.50% reduction of TU by D. magna evaluation, and lowered toxicity rank (TU=4.51, classIII) to T. pyriformis than that after PAC adsorption (TU > 10, ClassIV). Meanwhile, biodegradability was also improved by 9.17% after LAC adsorption. Lastly, LAC would exhibit great economic benefits as an alternative for PAC in subsequent process after anaerobic pretreatment. (c) 2018 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据