4.7 Article

Early development of apoplastic barriers and molecular mechanisms in juvenile maize roots in response to La2O3 nanoparticles

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 653, 期 -, 页码 675-683

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2018.10.320

关键词

Lanthanum oxide nanoparticles; Juvenile maize; Apoplastic barriers; Lignin biosynthesis; Gene expressions

资金

  1. NSFC [41820104009, 41530642, 41573092, 41807378]
  2. Qingdao National Laboratory for Marine Science and Technology [2015ASTP-0S04]
  3. USDA-NIFA Hatch program [MAS 00475]

向作者/读者索取更多资源

The increasing occurrence of engineered nanoparticles (NPs) in soils may decrease water uptake in crops, followed by lower crop yield and quality. As one of the most common rare earth oxide NPs, lanthanum oxide (La2O3) NPs may inhibit the relative expressions of aquaporin genes, thus reduce water uptake. In the present study, maize plants were exposed to different La2O3 NPs concentrations (0, 5, 50 mg L-1) for 72 h and 144 h right after the first leaf extended completely. Our results revealed that water uptake was reduced by La2O3 NPs through accelerating the development of apoplastic barriers inmaize roots. The level of abscisic acid, determined by using ultra high performance liquid chromatography-tandem mass spectrometry, was increased upon La2O3 NPs exposure. Furthermore, ZmPAL, ZmCCR2 and ZmCAD6, the core genes specific for biosynthesis of lignin, were up-regulated by 3-13 fold in roots exposed to 50 mg L-1 La2O3 NPs. However, ZmF5H was suppressed, indicating that lignin with S units could be excluded for the formed lignin in apoplastic barriers upon La2O3 NPs exposure. The level of essential component of apoplastic barriers-ligninwas increased by 1.5-fold. The early development of apoplastic barriers was observed, and stomatal conductance and transpiration rate of La2O3 NPs-treated plants were significantly decreased by 63%-83% and 42%-86%, respectively, as compared to the control. The lignin enriched apoplastic barriers in juvenile maize thus led to the reduction of water uptake, subsequently causing significant growth inhibition. This is the first study to show early development of root apoplastic barriers upon La2O3 NPs exposure. This study will help us better understand the function of apoplastic barriers in roots in response to NPs, further providing fundamental knowledge to develop safer and more efficient agricultural nanotechnology. (c) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据