4.7 Article

Alleviating Na+ effect on phosphate and potassium recovery from synthetic urine by K-struvite crystallization using different magnesium sources

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 655, 期 -, 页码 211-219

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2018.11.259

关键词

Phosphate; Potassium; K-struvite crystallization; Magnesium source

资金

  1. Natural Science Foundation of Hebei Province [E2018203293]

向作者/读者索取更多资源

Human urine is characterized by high concentrations of nitrogen (N), phosphorus (P) and potassium (K), of which the P and K can be recovered as K-struvite crystals. This study first investigated the formation of Na-struvite because of the high Na+ present in the urine. From the results, the optimal pH for the Na-struvite crystallization was observed to be 12, and the rise in the Na+ concentration distinctly favored the Na-struvite formation. As magnesium needed to be added to induce the K-struvite crystallization, several magnesium sources including MgCl2, Mg sacrificial electrode and Mg(OH)(2) were applied to recover P and K from synthetic urine. The findings indicated that when MgCl2 was used as the magnesium source, the K removal could be slightly enhanced by prolonging the reaction time, which would correspondingly decrease the Na concentration in the precipitates; besides, the intermittent addition of MgCl2 could noticeably improve the removal efficiency of K by 6%, but simultaneously raise the Na content in the precipitates recovered. With respect to the use of the Mg sacrificial electrode, the recovery efficiencies of the P and K from synthetic urine were close to those with the use of MgCl2. However, when Mg(OH)(2) was used as the magnesium source, the recovery efficiencies of P and K achieved only roughly 50%, which was much lower than those noted when MgCl2 and the Mg sacrificial electrode were employed. A comprehensive analysis revealed that the MgCl2 was the best magnesium source for the K-struvite crystallization, followed by the Mg sacrificial electrode and Mg(OH)(2). (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据