4.7 Article

Spatio-temporal dynamics, drivers and potential sources of heavy metal pollution in riparian soils along a 600 kilometre stream gradient in Central China

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 651, 期 -, 页码 1935-1945

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2018.10.107

关键词

Heavy metals; Distribution pattern; Source identification; Risk assessment; Riparian zone

资金

  1. National Natural Science Foundation of China [31570521, 31300441]
  2. Executive Office of the State Council Three Gorges Construction Committee [SX2013-022]

向作者/读者索取更多资源

Riparian ecosystems are particularly prone to heavy metal (HM) contamination, acting as a sink for HMs coming from human activities upstream or on adjacent uplands. An advanced understanding of the spatio-temporal dynamics, environmental drivers and the likely sources of HM contamination in riparian soils will be necessary for the conservation of riparian ecosystems. Thus, we conducted a nine-year study across a 600 km stream gradient along the Yangtze river, which has come under immense pressure in recent years partly due to the establishment of the Three Gorges Dam (TGD), the largest hydropower dam in the world. Levels of soil As, Cr, Pb, and Cu in the TGD's water level fluctuation zone (WLFZ) have consistently increased since the TGD's establishment. This increase tended to be more rapid at the upstream reaches of the WLFZ, where most HMs (As, Cd, Pb, Cu, and Zn) also tended to be particularly high. Our analyses suggest that the spatio-temporal dynamics of these metals are strongly influenced by soil phosphorus (P), organic matter, texture and manganese. In many cases HM levels exceeded acceptable pollution levels according to multiple indices. However, from 2008 to 2010 Hg and Cd presented great threat to ecosystem health, but from 2011 to 2016 levels of As and Pb became the primary concern due to increases in their concentrations of 152 and 38%, respectively, relative to 2009 levels. Factor analysis indicated that the major identifiable anthropogenic sources of HMs were traffic exhaust, sources associated with organic matter output (e.g. sewage), and sources associated with P output (e.g. agricultural runoff), with the latter generally dominant in the upper and middle reaches of the TGD watershed. These results indicate that the prioritization of As and Pb pollution and control of agricultural runoff will play an important role in the ecological protection in the TGR's riparian ecosystems. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据