4.7 Article

FAR gene enables the brown planthopper to walk and jump on water in paddy field

期刊

SCIENCE CHINA-LIFE SCIENCES
卷 62, 期 11, 页码 1521-1531

出版社

SCIENCE PRESS
DOI: 10.1007/s11427-018-9462-4

关键词

Nilaparvata lugens; fatty acyl-CoA reductase; cuticular hydrocarbon; waterproofing

类别

向作者/读者索取更多资源

Many insects can live on water and survive being caught in the rain. Current research has shown that insect cuticular hydrocarbons (CHC) confer desiccation resistance to maintain water balance. In this study, we identified a fatty acyl-CoA reductase gene (NlFAR) of the rice brown planthopper, Nilaparvata lugens that is essential for the production of CHCs, and found that NlFAR is essential for N. lugens to walk and jump on water when moving from one rice plant to another in paddy fields. NlFAR was mainly expressed in the integument at the beginning of each molt. Cuticular surface analysis by scanning electron microscopy and characterization of CHC extracts indicated that N. lugens with knockdown of NlFAR using RNA inference (RNAi) had a neater epicuticle layer and a significant decrease in CHC contents. Knockdown of NlFAR did not influence the desiccation resistance of N. lugens, but the dsNlFAR-treated insects were easily adhered and moistened by water droplets or their own secreted honeydew and unable to walk or jump on water. These results suggested that NlFAR is a crucial enzyme for CHC biosynthesis and cuticle waterproofing, but not for water retention of N. lugens, which may provide a potential strategy for pest management.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据