4.8 Review

Electronic structure in the transition metal block and its implications for light harvesting

期刊

SCIENCE
卷 363, 期 6426, 页码 484-488

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.aav9104

关键词

-

资金

  1. Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-FG02-01ER15282]

向作者/读者索取更多资源

Transition metal-based chromophores play a central role in a variety of light-enabled chemical processes ranging from artificial solar energy conversion to photoredox catalysis. The most commonly used compounds include elements from the second and third transition series (e.g., ruthenium and iridium), but their Earth-abundant first-row analogs fail to engage in photoinduced electron transfer chemistry despite having virtually identical absorptive properties. This disparate behavior stems from fundamental differences in the nature of 3d versus 4d and 5d orbitals, resulting in an inversion in the compounds' excited-state electronic structure and undermining the ability of compounds with first-row elements to engage in photoinduced electron transfer. This Review will survey the key experimental observations establishing this difference in behavior, discuss the underlying reasons for this phenomenon, and briefly summarize efforts that are currently under way to alter this paradigm and open the door to new opportunities for using Earth-abundant materials for photoinduced electron transfer chemistries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据