4.8 Article

North America's oldest boreal trees are more efficient water users due to increased [CO2], but do not grow faster

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1816686116

关键词

water use efficiency; carbon dioxide; stable isotopes; productivity; boreal forest

资金

  1. NSERC
  2. Fonds de Recherche Quebecois Nature et Technologies

向作者/读者索取更多资源

Due to anthropogenic emissions and changes in land use, trees are now exposed to atmospheric levels of [CO2] that are unprecedented for 650,000 y [Luthi et al. (2008) Nature 453: 379-382] (thousands of tree generations). Trees are expected to acclimate by modulating leaf-gas exchanges and alter water use efficiency which may result in forest productivity changes. Here, we present evidence of one of the strongest, nonlinear, and unequivocal postindustrial increases in intrinsic water use efficiency (iWUE) ever documented (+59%). A dual-isotope tree-ring analysis (delta C-13 and delta O-18) covering 715 y of growth of North America's oldest boreal trees (Thuja occidentalis L.) revealed an unprecedented increase in iWUE that was directly linked to elevated assimilation rates of CO2 (A). However, limited nutrient availability, changes in carbon allocation strategies, and changes in stomatal density may have offset stem growth benefits awarded by the increased iWUE. Our results demonstrate that even in scenarios where a positive CO2 fertilization effect is observed, other mechanisms may prevent trees from assimilating and storing supplementary anthropogenic emissions as above-ground biomass. In such cases, the sink capacity of forests in response to changing atmospheric conditions might be overestimated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据