4.8 Article

Zn-dependent bifunctional proteases are responsible for leader peptide processing of class III lanthipeptides

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1815594116

关键词

lanthipeptide; biosynthesis; natural product; protease; ribosomal peptide

资金

  1. 1000-Youth Talents Plan
  2. NSF of China [21778030, 2181101209]
  3. NSF of Jiangsu Province [BK20160640]
  4. State Key Laboratory of Coordination Chemistry
  5. Fundamental Research Funds for the Central Universities [14380138, 14380131]

向作者/读者索取更多资源

Lanthipeptides are an important subfamily of ribosomally synthesized and posttranslationally modified peptides, and the removal of their N-terminal leader peptides by a designated protease(s) is a key step during maturation. Whereas proteases for class I and II lanthipeptides are well-characterized, the identity of the protease(s) responsible for class III leader processing remains unclear. Herein, we report that the class III lanthipeptide NAI-112 employs a bifunctional Zn-dependent protease, AplP, with both endo-and aminopeptidase activities to complete leader peptide removal, which is unprecedented in the biosynthesis of lanthipeptides. AplP displays a broad substrate scope in vitro by processing a number of class III leader peptides. Furthermore, our studies reveal that AplP-like proteases exist in the genomes of all class III lanthipeptide-producing strains but are usually located outside the biosynthetic gene clusters. Biochemical studies show that AplP-like proteases are universally responsible for the leader removal of the corresponding lanthipeptides. In addition, AplP-like proteases are phylogenetically correlated with aminopeptidase N from Escherichia coli, and might employ a single active site to catalyze both endo-and aminopeptidyl hydrolysis. These findings solve the long-standing question as to the mechanism of leader peptide processing during class III lanthipeptide biosynthesis, and pave the way for the production and bioengineering of this class of natural products.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据