4.8 Article

Mature vessel networks in engineered tissue promote graft-host anastomosis and prevent graft thrombosis

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1814238116

关键词

tissue engineering; endothelial cells; graft perfusion; vessel maturation

资金

  1. FP7 European Research Council Grant, ENGVASC [281501]
  2. I-CORE program of the Israeli Planning and Budgeting Committee
  3. Israel Science Foundation Grant [1421/16]
  4. European Research Council (ERC) [281501] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Graft vascularization remains one of the most critical challenges facing tissue-engineering experts in their attempt to create thick transplantable tissues and organs. In vitro prevascularization of engineered tissues has been suggested to promote rapid anastomosis between the graft and host vasculatures; however, thrombotic events have been reported upon graft implantation. Here, we aimed to determine whether in vitro vessel maturation in transplantable grafts can accelerate vascular integration and graft perfusion and prevent thrombotic events in the grafts. To this end, endothelial cells and fibroblasts were cocultured on 3D scaffolds for 1, 7, or 14 d to form vasculature with different maturation degrees. Monitoring graft-host interactions postimplantation demonstrated that the 14-d in vitro-cultured grafts, bearing more mature and complex vessel networks as indicated by elongated and branched vessel structures, had increased graft-host vessel anastomosis; host vessel penetration into the graft increased approximately eightfold, and graft perfusion increased sixfold. The presence of developed vessel networks prevented clot accumulation in the grafts. Conversely, short-term cultured constructs demonstrated poor vascularization and increased thrombus formation. Elevated expression levels of coagulation factors, von Willebrand factor (vWF), and tissue factor (TF), were demonstrated in constructs bearing less mature vasculature. To conclude, these findings demonstrate the importance of establishing mature and complex vessel networks in engineered tissues before implantation to promote anastomosis with the host and accelerate graft perfusion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据