4.5 Article

Electrospun electroactive nanofibers of gelatin-oligoaniline/Poly (vinyl alcohol) templates for architecting of cardiac tissue with on-demand drug release

期刊

POLYMERS FOR ADVANCED TECHNOLOGIES
卷 30, 期 6, 页码 1473-1483

出版社

WILEY
DOI: 10.1002/pat.4579

关键词

conductive fiber; electroactive scaffold; gelatin; nanofiber; oligoaniline; tissue engineering

向作者/读者索取更多资源

In this study, grafted gelatin with oligoaniline (GelOA) was synthesized and then mixed with Poly (vinyl alcohol) (PVA). Several scaffolds with different ratio of PVA/GelOA were electrospun to fabricate electroactive scaffolds. GelOA was characterized using Fourier-transform infrared spectroscopy (FTIR); moreover, nanofiber properties were evaluated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscope (SEM) analyses. Nanofibers diameter was decreased with aniline oligomer increment form 300 to 150 nm because of the hydrophobic nature of the aniline oligomer. Aniline oligomer electroactivity was studied using cyclic voltammetry, which exhibited two redox peaks at 0.4 and 0.6. Moreover, aniline oligomer enhancement resulted in melting point increasing from 220 degrees C to 230 degrees C because of the crystallinity increment. To assess the biocompatibility of nanofibers, cell viability and cell adhesion were tracked using mesenchymal stem cell (MSCs). It was revealed that the presence of aniline oligomer leads to enhancing the conductivity, thermal properties and lowering the degradation rate and drug release. Among of different scaffolds, sample with high content of GelOA shows better behavior in physical and biological properties. Accumulative drug releases under applied electrical field at 40 minutes showed that the drug release for stimulated condition is about 33% more than the unapplied electrical field one.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据