4.6 Article

The PHO signaling pathway directs lipid remodeling in Cryptococcus neoformans via DGTS synthase to recycle phosphate during phosphate deficiency

期刊

PLOS ONE
卷 14, 期 2, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0212651

关键词

-

资金

  1. National Health and Medical Research Council of Australia [APP1058779]
  2. National Collaborative Research Infrastructure Strategy
  3. Westmead Institute for Medical research

向作者/读者索取更多资源

The phosphate sensing and acquisition (PHO) pathway of Cryptococcus neoformans is essential for growth in phosphate-limiting conditions and for dissemination of infection in a mouse model. Its key transcription factor, Pho4, regulates expression of genes controlling the acquisition of phosphate from both external and cellular sources. One such gene, BTA1, is highly up-regulated during phosphate starvation. Given that a significant proportion of cellular phosphate is incorporated into phospholipids, and that the Pho4-dependent BTA1 gene encodes an enzyme predicted to catalyse production of a phosphorus-free betaine lipid, we investigated whether phospholipids provide an accessible reservoir of phosphate during phosphate deficiency. By comparing lipid profiles of phosphate-starved WT C. neoformans, PHO4 (pho4 Delta) and BTA1 (bta1 Delta) deletion mutants using thin layer chromatography and liquid chromatography mass spectrometry, we showed that phosphatidylcholine (PC) is substituted by the phosphorus-free betaine lipids diacylglyceryl-N,N,N-trimethylhomoserine (DGTS) and diacylgyceryl hydroxymethyl-N,N,N-trimethyl-beta-alanine (DGTA) in a Pho4- and Bta1-dependent manner, and that BTA1 encodes a functional DGTS synthase. Synthesis of DGTA tightly correlated with that of DGTS, consistent with DGTS being the precursor of DGTA. Similar to pho4 Delta bta1 Delta grew more slowly than WT in cell culture medium (RPMI) and was hypovirulent in a murine model of cryptococcosis. In contrast to pho4 Delta bta1 Delta tolerated alkaline pH and disseminated to the brain. Our results demonstrate that Bta1-dependent substitution of PC by betaine lipids is tightly regulated in C. neoformans by the PHO pathway, to conserve phosphate and preserve membrane integrity and function. This phospholipid remodeling strategy may also contribute to cryptococcal virulence during host infection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据