4.7 Article

Differential and reciprocal regulation of ethylene pathway genes regulates petal abscission in fragrant and non-fragrant roses

期刊

PLANT SCIENCE
卷 280, 期 -, 页码 330-339

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.plantsci.2018.12.013

关键词

Ethylene signalling; Petal; Senescence; Cell separation; Flower; Vase-life

资金

  1. Council of Scientific and Industrial Research (Govt of India) [BSC0107]

向作者/读者索取更多资源

The fragrant rose, Rosa bourboniana, is highly sensitive to ethylene and shows rapid petal abscission (within 16-18 h) while the non-fragrant hybrid rose, R. hybrida, shows delayed abscission (50-52 h) due to reduced ethylene sensitivity. To understand the molecular basis governing these differences, all components of the ethylene pathway (biosynthesis/receptor/signalling) were studied for expression during abscission. Transcript accumulation of most ethylene biosynthesis genes (ACS/ACO families) increased rapidly in petal abscission zones of R. bourboniana within 4-8 h of ethylene treatment. The expression of most receptor and signalling genes encoding CTRs, EIN2 and EIN3/EIL homologues also followed similar kinetics. Under natural field conditions where abscission takes longer, there was a temporal delay in transcript accumulation of most ethylene pathway genes while some biosynthesis genes (showing reduced ethylene sensitivity) were more strongly up-regulated by abscission cues. In contrast, in R. hybrida where even ethylene-induced abscission is considerably delayed, transcript accumulation of most ethylene biosynthesis and signalling genes was, surprisingly, reduced by ethylene and showed an opposite regulation compared to R. bourboniana. The results suggest that differential and reciprocal regulation of ethylene pathway is one of the major reasons for differences in petal abscission and vase-life between Rosa bourboniana and R. hybrida.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据