4.8 Article

Regulatory actors and alternative routes for Arabidopsis seed germination are revealed using a pathway-based analysis of transcriptomic datasets

期刊

PLANT JOURNAL
卷 99, 期 1, 页码 163-175

出版社

WILEY
DOI: 10.1111/tpj.14311

关键词

Arabidopsis thaliana; dormancy; germination; plant pathways; seed; transcriptomics

资金

  1. French National Research Agency [SUNRISE/ANR-11-BTBR-0005]

向作者/读者索取更多资源

Regulation of seed germination by dormancy relies on a complex network of transcriptional and post-transcriptional modifications during seed imbibition that controls seed adaptive responses to environmental cues. High-throughput technologies have brought significant progress in the understanding of this phenomenon and have led to identify major regulators of seed germination, mostly by studying the behaviour of highly differentially expressed genes. However, the actual models of transcriptome analysis cannot catch additive effects of small variations of gene expression in individual signalling or metabolic pathways, which are also likely to control germination. Therefore, the comprehension of the molecular mechanism regulating germination is still incomplete and to gain knowledge about this process we have developed a pathway-based analysis of transcriptomic Arabidopsis datasets, to identify regulatory actors of seed germination. The method allowed quantifying the level of deregulation of a wide range of pathways in dormant versus non-dormant seeds. Clustering pathway deregulation scores of germinating and dormant seed samples permitted the identification of mechanisms involved in seed germination such as RNA transport or vitamin B6 metabolism, for example. Using this method, which was validated by metabolomics analysis, we also demonstrated that Col and Cvi seeds follow different metabolic routes for completing germination, demonstrating the genetic plasticity of this process. We finally provided an extensive basis of analysed transcriptomic datasets that will allow further identification of mechanisms controlling seed germination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据