4.7 Article

Favorable Bioactivity of the SDHI Fungicide Benzovindiflupyr Against Sclerotinia sclerotiorum Mycelial Growth, Sclerotial Production, and Myceliogenic and Carpogenic Germination of Sclerotia

期刊

PLANT DISEASE
卷 103, 期 7, 页码 1613-1620

出版社

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/PDIS-05-18-0729-RE

关键词

baseline; benzovindiflupyr; sclerotia; Sclerotinia sclerotiorum; succinate dehydrogenase inhibitor; translocation

资金

  1. National Key R&D Program of China [2017YFD0200307]
  2. National Natural Science Foundation of China [31772203]

向作者/读者索取更多资源

Sclerotinia sclerotiorum, which can cause Sclerotinia stem rot, is a prevalent plant pathogen. This study aims to evaluate the application potential of benzovindiflupyr, a new generation of succinate dehydrogenase inhibitor (SDHI), against S. sclerotiorum. In our study, 181 isolates collected from different crops (including eggplant [n = 34], cucumber [n = 27], tomato [n = 29], pepper [n = 35], pumpkin [n = 32], and kidney bean [n = 25]) in China were used to establish baseline sensitivity to benzovindiflupyr. The frequency distribution of the 50% effective concentration (EC50) values of benzovindiflupyr was a unimodal curve, with mean EC50 values of 0.0260 +/- 0.011 mu g/ml, and no significant differences in mean EC50 existed among the various crops (P > 0.99). Benzovindiflupyr can effectively inhibit mycelial growth, sclerotial production, sclerotial shape, and myceliogenic and carpogenic germination of the sclerotia of S. sclerotiorum. In addition, benzovindiflupyr showed good systemic translocation in eggplant. Using benzovindiflupyr at 100 mu g/ml yielded efficacies of 71.3 and 80.5% for transverse activity and cross-layer activity, respectively, which were higher than those of acropetal and basipetal treatments (43.6 and 44.7%, respectively). Greenhouse experiments were then carried out at two experimental sites for verification. Applying benzovindiflupyr at 200 g a.i. ha(-1) significantly reduced the disease incidence and severity of Sclerotinia stem rot. Overall, the results demonstrated that benzovindiflupyr is a potential alternative product to control Sclerotinia stem rot.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据