4.7 Article

Coordination and trade-offs between leaf and stem hydraulic traits and stomatal regulation along a spectrum of isohydry to anisohydry

期刊

PLANT CELL AND ENVIRONMENT
卷 42, 期 7, 页码 2245-2258

出版社

WILEY
DOI: 10.1111/pce.13543

关键词

hydraulic capacitance; leaf hydraulic conductance; stem hydraulic conductivity; stomatal regulation; wood anatomy

资金

  1. NSF [IOS 11-46746]

向作者/读者索取更多资源

The degree of plant iso/anisohydry, a widely used framework for classifying species-specific hydraulic strategies, integrates multiple components of the whole-plant hydraulic pathway. However, little is known about how it associates with coordination of functional and structural traits within and across different organs. We examined stem and leaf hydraulic capacitance and conductivity/conductance, stem xylem anatomical features, stomatal regulation of daily minimum leaf and stem water potential (psi), and the kinetics of stomatal responses to vapour pressure deficit (VPD) in six diverse woody species differing markedly in their degree of iso/anisohydry. At the stem level, more anisohydric species had higher wood density and lower native capacitance and conductivity. Like stems, leaves of more anisohydric species had lower hydraulic conductance; however, unlike stems, their leaves had higher native capacitance at their daily minimum values of leaf psi. Moreover, rates of VPD-induced stomatal closure were related to intrinsic rather than native leaf capacitance and were not associated with species' degree of iso/anisohydry. Our results suggest a trade-off between hydraulic storage and efficiency in the leaf, but a coordination between hydraulic storage and efficiency in the stem along a spectrum of plant iso/anisohydry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据