4.7 Article

On the inherent bias of swirling strength in defining vortical structure

期刊

PHYSICS OF FLUIDS
卷 31, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5089883

关键词

-

资金

  1. U.S. Army [W911NF-16-2-0143]

向作者/读者索取更多资源

The traditional practice of using rotational motion as the principal attribute of coherent vortical structures in the buffer region of near-wall turbulent flow is shown to create a biased accounting of the role of vorticity within the structures. Vorticity associated with rotation is given a favored consideration against vorticity that is equally strong but not associated with rotation. Using data from a highly resolved direct numerical simulation of channel flow, it is shown that describing the structures based on the properties of the rotational field leads to a distorted view of the actual structures that are present. As a practical matter, this means that where hairpins are typically considered to be the flow structures, a more accurate description of the coherent events is that they are elongated mushroom-shaped vortical objects ejecting over low speed streaks. In this, hairpin-shaped rotational regions are embedded in the lobes of the mushrooms. Published under license by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据