4.8 Article

Time-Periodic Stiffness Modulation in Elastic Metamaterials for Selective Wave Filtering: Theory and Experiment

期刊

PHYSICAL REVIEW LETTERS
卷 122, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.122.124301

关键词

-

资金

  1. Air Force Office of Scientific Research Grant [FA9550-15-1-0397]
  2. Army Research Office [W911NF-18-1-0036]

向作者/读者索取更多资源

Elastic waveguides with time-modulated stiffness feature a frequency-periodic dispersion spectrum, where branches merge at multiple integers of half the modulation frequency and over a finite wave number range. In this range, frequency becomes complex, with its real part remaining constant. The vanishing group velocity associated with these flat bands leads to frequency-selective reflection at an interface between a nonmodulated medium and a time-modulated one, which converts a broadband input into a narrow-band output centered at the half modulation frequency. This behavior is illustrated in an elastic waveguide in transverse motion, where modulation is implemented experimentally by an array of piezoelectric patches shunted through a negative electrical capacitance controlled by a switching circuit. The switching schedule defines the modulation frequency and allows the selection of the output frequency. This implementation is suitable for the investigation of numerous properties of time-space modulated elastic metamaterials, such as nonreciprocity and one-way propagation, and can lead to the implementation of novel functionalities for acoustic wave devices operating on piezoelectric substrates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据