4.8 Article

Emergence of Active Nematic Behavior in Monolayers of Isotropic Cells

期刊

PHYSICAL REVIEW LETTERS
卷 122, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.122.048004

关键词

-

资金

  1. Swiss National Science Foundation [P2EZP2_165261]
  2. Royal Commission for the Exhibition of 1851 Research Fellowship
  3. Swiss National Science Foundation (SNF) [P2EZP2_165261] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

There is now growing evidence of the emergence and biological functionality of liquid crystal features, including nematic order and topological defects, in cellular tissues. However, how such features that intrinsically rely on particle elongation emerge in monolayers of cells with isotropic shapes is an outstanding question. In this Letter, we present a minimal model of cellular monolayers based on cell deformation and force transmission at the cell-cell interface that explains the formation of topological defects and captures the flow-field and stress patterns around them. By including mechanical properties at the individual cell level, we further show that the instability that drives the formation of topological defects, and leads to active turbulence, emerges from a feedback between shape deformation and active driving. The model allows us to suggest new explanations for experimental observations in tissue mechanics, and to propose designs for future experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据