4.5 Article

Determination of physical properties of graphene doped ZnO (ZnO:Gr) nanocomposite thin films deposited by a thermionic vacuum arc technique

期刊

PHYSICA B-CONDENSED MATTER
卷 557, 期 -, 页码 27-33

出版社

ELSEVIER
DOI: 10.1016/j.physb.2018.12.039

关键词

ZnO:Gr nanocomposite thin films; TVA; XRD; FESEM; AFM

向作者/读者索取更多资源

This study is focused on the growth of graphene doped ZnO (ZnO:Gr) nanocomposite thin films by a thermionic vacuum arc (TVA) technique. ZnO:Gr nanocomposite thin films were deposited onto glass and silicon (Si) substrates. The influence of the dopant effect on structural, optical, morphological properties of the ZnO:Gr nanocomposite thin films were investigated by using various analysis techniques such as interferometer, UV-Visible spectrophotometer, X-ray diffraction (XRD), Raman spectrometer, Fourier Transform Infrared spectroscopy (FTIR), Photoluminescence (PL) spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), and Atomic Force Microscopy (AFM). Thickness values of the ZnO:Gr nanocomposite thin films for the deposited layers onto glass and Si substrates were measured as to be 50 nm and 20 nm, respectively. In XRD patterns, the reflections of the ZnO and carbon nanostructures were observed. Using UV-Vis spectrophotometer and optical interferometer, the refractive index, reflectance, transmittance, absorbance and optical band gap graphs of the ZnO:Gr nanocomposite thin films were determined. Optical band gap of the ZnO:Gr nanocomposite thin film that deposited on glass substrate was determined as to be 3.15 eV via optical method and the result is in good harmony with PL measurement. PL spectrum showed an ultraviolet (UV) emission peak at 397 nm (3.12 eV). From the Raman analysis of the ZnO:Gr nanocomposite thin films, ZnO, D and 2D peaks of the graphene were observed. FTIR spectroscopy was used to analyze the chemical composition of the samples. According to AFM and FESEM analysis, ZnO:Gr nanocomposite thin films are smooth, flat, granular, uniform and dense form. Due to the larger crystallite sizes ZnO:Gr nanocomposite thin film onto Si substrate has lower resistivity according to the ZnO:Gr nanocomposite thin film deposited onto glass substrate. As a result, ZnO:Gr nanocomposite thin films are promising material for potential applications as to be a transparent conducting oxide (TCO) material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据