4.6 Article

Frequency driven organic memristive devices for neuromorphic short term and long term plasticity

期刊

ORGANIC ELECTRONICS
卷 65, 期 -, 页码 434-438

出版社

ELSEVIER
DOI: 10.1016/j.orgel.2018.11.033

关键词

Brain machine interface; Neuromophic engineering; Memory; Memristors; Bioinspired circuits

资金

  1. Autonomous Province of Trento, Italy (PAT): Developing and studying novel intelligent nano materials and devices towards adaptive electronics and neuroscience applications - MaDEleNA Project

向作者/读者索取更多资源

The concomitant and concurrent presence of cellular mechanisms, such as the activity-dependent Long Term Potentiation (LTP) and Depression (LTD), and the Short Term Plasticity (STP) is believed to be at the basis of encoding memories in brains. Thus, the best possible emulation of these fundamental brain activities is essential for developing bioinspired circuits and novel adaptive technologies, and, looking in perspective, an efficient brain-machine interface. In this framework, memristive devices are increasingly considered as key elements in the emerging fields of neuromorphic engineering and computing because of their synaptic-like plasticity properties. Here we demonstrate the realization of organic memristive devices (OMDs), based on polyaniline (PANI), mimicking controlled neuromorphic functions. In particular our OMDs exhibit LTD or LTP by varying the polarity or, more interestingly, by varying the frequency of the incoming stimuli, according to the typical biological patterns. In both cases, OMDs show also an effect analogous to the transition between short term to long term memory, as a function of the total number of received pulses. We validate that organic memristors represent an important step toward an intelligent neuroprosthetics demonstrating through the hardware implementation of OMDs neuromorphic functionalities, the possibility of pairing the frequency dependence of synaptic signals with the non-volatile evolution of the internal memory states of the device.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据