4.6 Article

Effect of annealing temperature on the performance of printable carbon electrodes for perovskite solar cells

期刊

ORGANIC ELECTRONICS
卷 65, 期 -, 页码 375-380

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.orgel.2018.11.046

关键词

Carbon based electrodes; Carbon paste; Screen printing; Thermal annealing; Perovskite solar cells

资金

  1. Qatar University Internal Grant [QUCG-CAM-2018/2019-1]

向作者/读者索取更多资源

Perovskite solar cells (PSCs) with mesoporous TiO2 electron transport layers have reached > 22% efficiency at laboratory scale ( < 1 cm(2)), however, these layers are fabricated using spin-coating, which is not conducive to large-scale or high throughput fabrication. Alternatively, screen printing, slot die coating and spray pyrolysis techniques are very suitable for commercial scale production of PSCs. In this work, low-cost carbon films intended for PSCP top conductor layer have been prepared by screen printing method and their electrical, morphological and structural properties have been investigated for annealing temperatures ranging from 100 degrees C to 400 degrees C. The properties of the carbon films have been examined using scanning electron microscopy, atomic force microscopy, sheet resistance measurement technique, thermogravimetric analysis, differential scanning calorimetry, fourier transform infrared spectroscopy and raman spectroscopy. The carbon films annealed at 250 degrees C-300 degrees C exhibited good electrical and morphological properties, however, annealing temperature over 300 degrees C deforms and peels off the carbon films. Nevertheless, devices fabricated from printed substrates with a carbon top contact showed that annealing of the hole transport material-free mesoscopic architecture to over 300 degrees C is necessary prior to the infiltration of the perovskite precursor solution. Although a low annealing temperature is required for better adherence of the conducive carbon films, however, temperatures higher than 300 degrees C are needed to fabricate mesoscopic perovskite solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据