4.6 Article

Thermal effects of ultrafast laser interaction with polypropylene

期刊

OPTICS EXPRESS
卷 27, 期 4, 页码 5764-5783

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.27.005764

关键词

-

类别

向作者/读者索取更多资源

Ultrafast lasers have been used for high-precision processing of a wide range of materials, including dielectrics, semiconductors. metals and polymer composites, enabling numerous applications ranging from micromachining to phatonics and life sciences. To make ultrafast laser materials processing compatible with the scale and throughput needed for industrial use, it is a common practice to run the laser at a high repetition rate and hence high average power. However, heat accumulation under such processing conditions will deteriorate the processing quality, especially for polymers, which typically have a low melting temperature. In this paper, an analytical solution to a transient, two-dimensional thermal model is developed using Duhamel's theorem and the Hankel transform. This solution is used to understand the effect of laser parameters on ultrafast laser processing of polypropylene (PP). Laser cutting experiments are carried out on PP sheets to correlate with the theoretical calculation. This study shows that, in laser cutting, the total energy absorbed in the material and the intensity are two important figures of merit to predict the cutting performance. Heat accumulation is observed at low scanning speeds and high repetition rates, leading to significant heat-affected zone and even burning of the material, which is supported by experimental data and modelling results. It is found that heat accumulation can be avoided by a proper choice of the processing condition. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据