4.6 Article

A PbSe nanocrystal vertical phototransistor with graphene electrode

期刊

OPTICAL MATERIALS
卷 89, 期 -, 页码 138-141

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.optmat.2019.01.014

关键词

Vertical phototransistor; Lead selenide nanocrystal; Graphene electrode

资金

  1. National Natural Science Foundation of China [61675147, 61605141]
  2. Foundation of Independent Innovation of Tianjin University [0903065043]

向作者/读者索取更多资源

Recently, low-voltage phototransistors have become promising candidates for optoelectronic applications. In this study, a general strategy for the fabrication of high-performance lead selenide (PbSe) nanocrystal (NCs)-based vertical phototransistor (VPT) using graphene as electrode was presented. Within the vertical geometry, channel length was determined by measuring the thickness of NCs thin film, thus enabling the device with ultrashort channel length (213 nm) without expensive lithography. Moreover, a high current density of 863 A cm(-2) was obtained at low voltage. Utilizing the unique tunable Fermi energy (FE) of graphene, the vertical carrier transport could be effectively modulated by the Schottky barrier height between the graphene and PbSe NCs active material. As a result, the device exhibited excellent photoelectric characteristics, including a responsivity of 1.1 x 10(4) A W-1, an external quantum efficiency of 1.7 x 10(6)% a detectivity of 1.3 x 10(10) Jones, and a temporal response of 7 ms at an illumination irradiance of 36 mW cm(-2). Through analysis of energy levels, the carrier transport was modulated by the barrier height at the graphene-PbSe NCs interface, which is attributed to the tunable FE of graphene. Fabrication of VPT with high performance and low energy consumption represents a significant step forward for high-speed opticalswitch applications and future nanoscale complementary circuits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据