4.8 Article

Efficient Enhancement of Electrochemiluminescence from Cadmium Sulfide Quantum Dots by Glucose Oxidase Mimicking Gold Nanoparticles for Highly Sensitive Assay of Methyltransferase Activity

期刊

ANALYTICAL CHEMISTRY
卷 88, 期 5, 页码 2976-2983

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.6b00450

关键词

-

资金

  1. National Natural Science Foundation of China [21405072, 21275086, 21375047, 21575050, 21535002]
  2. Ministry of Education Rolling Support [IRT_15R31]
  3. Special Foundation for Taishan Scholar Professorship of Shandong Province [tspd20150209, ts20130937]
  4. Shandong Provincial Natural Science Foundation, China [ZR2014BL023]
  5. Project of Shandong Province Higher Educational Science and Technology Program [J14LC14]

向作者/读者索取更多资源

Herein, an original electrochemiluminescence (ECL) method for the detection of DNA methyltransferase (MTase) activity is presented based on the efficient enhanced ECL of CdS quantum dots (QDs) through catalytic generation of coreactant and energy transfer by glucose oxidase mimicking gold nanoparticles (Au NPs). Briefly, a double-stranded DNA (dsDNA) containing the symmetric sequence of 5'-CCGG-3' was bonded to the CdS QDs modified glassy carbon electrode (GCE). After that, the electrode was incubated with M.SssI CpG MTase which catalyzed the methylation of the specific CpG dinucleotides. Subsequently, the electrode was treated with a restriction endonuclease HpaII which could recognize and cut off the 5'-CCGG-3' sequence. Once the CpG site in the 5'-CCGG-3' was methylated, the recognition function of HpaII was blocked, and it could not cut off the ds-DNA. Later, Au NPs were combined-with the end of the ds-DNA section which was not cut off and has -SH groups. Therefore, the higher M.SssI MTase activity could lead to more Au NPs immobilized on ds-DNA. Au NPs could not only catalyze the oxidation of glucose with cosubstrate oxygen, producing gluconate and hydrogen peroxide (H2O2) which served as the ECL coreactant of CdS QDs, but also enhanced CdS QDs ECL via energy transfer (ET). Thus, the methylation event corresponding to the MTase activity could be monitored and amplified by this method. Finally, a logarithmic linear correlation between the ECL intensity of CdS QDs and the activity of M.SssI MTase that ranged from 1.0 to 120 U mL(-1) with the detection limit of 0.05 U mL(-1) was obtained.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据