4.4 Article

IH-DTL design with modified KONUS beam dynamics for a synchrotron-based proton therapy system

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nima.2018.10.125

关键词

IH-DTL; KONUS; Proton therapy

资金

  1. National Natural Science Foundation of China [U1730120]

向作者/读者索取更多资源

A modified Kombinierte Null Grad Struktur (KONUS) beam dynamics for inter-digital H-mode (IH) drift tube linac (DTL) is proposed in this study. This modified KONUS beam dynamics, which is aperiodic and is suitable for a short (<1 m) DTL design, is applied to a dedicated 325 MHz IH-DTL design at Tsinghua University. The IH-DTL, which is utilized in the injector of a synchrotron-based proton therapy system, is divided into three sections, namely, rebunching (-80 degrees), 0 degrees acceleration, and debunching (10 degrees). It is slightly different from the conventional KONUS cavity, and no focusing magnets exist in the cavity to reduce the cost of fabrication. The presence of 21 gaps in the cavity can accelerate a 15 mA proton beam from 3 MeV to 7 MeV. The cavity is tapered to adjust the gap voltage distribution, and the inner diameter varies from 196.8 mm to 232.6 mm. A cavity length of 1 m has a theoretical power consumption of 151 kW, whereas the maximum surface electric field is 40 MV/m (2.3 Kp). A new design process, which is similar to alternating-phase focusing method, is proposed. Details of the design method and results are presented in this study.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据