4.3 Article

Improving fire retardancy of cellulosic thermal insulating materials by coating with bio-based fire retardants

期刊

NORDIC PULP & PAPER RESEARCH JOURNAL
卷 34, 期 1, 页码 96-106

出版社

AB SVENSK PAPPERSTIDNING
DOI: 10.1515/npprj-2018-0031

关键词

bio-based; cellulose; coating; fire retardant; thermal insulating material

资金

  1. China Scholarship Council
  2. Swedish Research Council Formas [2014-6986-29014-28]

向作者/读者索取更多资源

Sustainable thermal insulating materials produced from cellulosic fibers provide a viable alternative to plastic insulation foams. Industrially available, abundant, and inexpensive mechanical pulp fiber and recycled textile fiber provide potential raw materials to produce thermal insulating materials. To improve the fire retardancy of low-density thermal insulating materials produced from recycled cotton denim and mechanical pulp fibers, bio-based fire retardants, such as sulfonated kraft lignin, kraft lignin, and nanoclays, were coated onto sustainable insulating material surfaces to enhance their fire retardancy. Microfibrillated cellulose was used as a bio-based binder in the coating formula to disperse and bond the fire-retardant particles to the underlying thermal insulating materials. The flammability of the coated thermal insulating materials was tested using a single-flame source test and cone calorimetry. The results showed that sulfonated kraft lignin-coated cellulosic thermal insulating materials had a better fire retardancy compared with that for kraft lignin with a coating weight of 0.8 kg/m(2). Nanoclay-coated samples had the best fire retardancy and did not ignite under a heat flux of 25 kW/m(2), as shown by cone calorimetry and single-flame source tests, respectively. These cost-efficient and bio-based fire retardants have broad applications for improving fire retardancy of sustainable thermal insulating materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据