4.6 Article

Quantum computational supremacy in the sampling of bosonic random walkers on a one-dimensional lattice

期刊

NEW JOURNAL OF PHYSICS
卷 21, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/ab0610

关键词

Boson sampling; quantum walks; quantum simulation; optical lattice and traps; quantum gas microscopes

向作者/读者索取更多资源

We study the sampling complexity of a probability distribution associated with an ensemble of identical noninteracting bosons undergoing a quantum random walk on a one-dimensional lattice. With uniform nearest-neighbor hopping we show that one can efficiently sample the distribution for times logarithmic in the size of the system, while for longer times there is no known efficient sampling algorithm. With time-dependent hopping and optimal control, we design the time evolution to approximate an arbitrary Haar-random unitary map analogous to that designed for photons in a linear optical network. This approach highlights a route to generating quantum complexity by optimal control only of a single-body unitary matrix. We study this in the context of two potential experimental realizations: a spinor optical lattice of ultracold atoms and a quantum gas microscope.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据