4.7 Article

Effects of cannabidiol on brain excitation and inhibition systems; a randomised placebo-controlled single dose trial during magnetic resonance spectroscopy in adults with and without autism spectrum disorder

期刊

NEUROPSYCHOPHARMACOLOGY
卷 44, 期 8, 页码 1398-1405

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41386-019-0333-8

关键词

-

资金

  1. GW Research Ltd (Cambridge, UK)
  2. Sackler Institute for Translational Neurodevelopment at King's College London, Autistica
  3. Medical Research Council (MRC) Centre grant [MR/N026063/1]
  4. EU-AIMS (European Autism Interventions)/EU AIMS-2-TRIALS, a European Innovative Medicines Initiative Joint Undertaking - European Union's Seventh Framework Programme (Grant FP7/2007-2013) [115300, 777394]
  5. NIH [R01 MH106564, U54 HD079123]
  6. MRC [MR/N026063/1] Funding Source: UKRI
  7. National Institute for Health Research [NIHR-INF-0675] Funding Source: researchfish

向作者/读者索取更多资源

There is increasing interest in the use of cannabis and its major non-intoxicating component cannabidiol (CBD) as a treatment for mental health and neurodevelopmental disorders, such as autism spectrum disorder (ASD). However, before launching large-scale clinical trials, a better understanding of the effects of CBD on brain would be desirable. Preclinical evidence suggests that one aspect of the polypharmacy of CBD is that it modulates brain excitatory glutamate and inhibitory.-aminobutyric acid (GABA) levels, including in brain regions linked to ASD, such as the basal ganglia (BG) and the dorsomedial prefrontal cortex (DMPFC). However, differences in glutamate and GABA pathways in ASD mean that the response to CBD in people with and without ASD may be not be the same. To test whether CBD 'shifts' glutamate and GABA levels; and to examine potential differences in this response in ASD, we used magnetic resonance spectroscopy (MRS) to measure glutamate (Glx = glutamate + glutamine) and GABA+ (GABA + macromolecules) levels in 34 healthy men (17 neurotypicals, 17 ASD). Data acquisition commenced 2 h (peak plasma levels) after a single oral dose of 600 mg CBD or placebo. Test sessions were at least 13 days apart. Across groups, CBD increased subcortical, but decreased cortical, Glx. Across regions, CBD increased GABA+ in controls, but decreased GABA+ in ASD; the group difference in change in GABA + in the DMPFC was significant. Thus, CBD modulates glutamate-GABA systems, but prefrontal-GABA systems respond differently in ASD. Our results do not speak to the efficacy of CBD. Future studies should examine the effects of chronic administration on brain and behaviour, and whether acute brain changes predict longer-term response.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据