4.8 Article

Advanced Evaluation of the Long-Term Stability of Oxygen Evolution Electrocatalysts

期刊

ANALYTICAL CHEMISTRY
卷 88, 期 15, 页码 7597-7602

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.6b01289

关键词

-

资金

  1. BMBF [FKZ: 03X3581D]

向作者/读者索取更多资源

Evaluation of the long-term stability of electrocatalysts is typically performed using galvanostatic polarization at a predefined current density. A stable or insignificant increase in the applied potential is usually interpreted as high long-term stability of the tested catalyst. However, effects such as (i) electrochemical degradation of a catalyst due to its oxidation, (ii) blocking of the catalyst surface by evolved gas bubbles, and (iii) detachment of the catalyst from the electrode surface may lead to a decrease of the catalyst's active surface area being exposed to the electrolyte. In order to separate these effects and to evaluate the true electrochemical degradation of electrocatalysts, an advanced evaluation protocol based on subsequently performed electrochemical impedance, double layer capacitance, cyclic voltammetry, and galvanostatic polarization measurements was developed and used to evaluate the degradation of IrO2 particles drop-coated on glassy carbon rotating disk electrode using Nafion as a binder. A flow-through electrochemical cell was developed enabling circulation of the electrolyte leading to an efficient removal of evolved oxygen bubbles even at high current densities of up to 250 mA/cm(2). The degradation rate of IrO2 was evaluated over 225 test cycles (0.733 +/- 0.022 mV/h) with a total duration of galvanostatic polarization measurements of over 55 h.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据