4.7 Review

An extensive experimental survey of regression methods

期刊

NEURAL NETWORKS
卷 111, 期 -, 页码 11-34

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neunet.2018.12.010

关键词

Regression; UCI machine learning repository; Cubist; M5; Gradient boosted machine; Extremely randomized regression tree

资金

  1. Erasmus Mundus Euphrates programme [2013-2540/001-001-EMA2]
  2. Xunta de Galicia (Centro singular de investigacion de Galicia, accreditation 2016-2019)
  3. European Union (European Regional Development Fund - ERDF) [MTM2016-76969-P]
  4. Spanish State Research Agency - European Regional Development Fund (ERDF)
  5. IAP network from Belgian Science Policy

向作者/读者索取更多资源

Regression is a very relevant problem in machine learning, with many different available approaches. The current work presents a comparison of a large collection composed by 77 popular regression models which belong to 19 families: linear and generalized linear models, generalized additive models, least squares, projection methods, LASSO and ridge regression, Bayesian models, Gaussian processes, quantile regression, nearest neighbors, regression trees and rules, random forests, bagging and boosting, neural networks, deep learning and support vector regression. These methods are evaluated using all the regression datasets of the UCI machine learning repository (83 datasets), with some exceptions due to technical reasons. The experimental work identifies several outstanding regression models: the M5 rule-based model with corrections based on nearest neighbors (cubist), the gradient boosted machine (gbm), the boosting ensemble of regression trees (bstTree) and the M5 regression tree. Cubist achieves the best squared correlation (R-2) in 15.7% of datasets being very near to it, with difference below 0.2 for 89.1% of datasets, and the median of these differences over the dataset collection is very low (0.0192), compared e.g. to the classical linear regression (0.150). However, cubist is slow and fails in several large datasets, while other similar regression models as M5 never fail and its difference to the best R-2 is below 0.2 for 92.8% of datasets. Other well-performing regression models are the committee of neural networks (avNNet), extremely randomized regression trees (extraTrees, which achieves the best R-2 in 33.7% of datasets), random forest (rf) and epsilon-support vector regression (svr), but they are slower and fail in several datasets. The fastest regression model is least angle regression lars, which is 70 and 2,115 times faster than M5 and cubist, respectively. The model which requires least memory is non-negative least squares (nnls), about 2 GB, similarly to cubist, while M5 requires about 8 GB. For 97.6% of datasets there is a regression model among the 10 bests which is very near (difference below 0.1) to the best R-2, which increases to 100% allowing differences of 0.2. Therefore, provided that our dataset and model collection are representative enough, the main conclusion of this study is that, for a new regression problem, some model in our top-10 should achieve R-2 near to the best attainable for that problem. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据