4.6 Article

FEMa: a finite element machine for fast learning

期刊

NEURAL COMPUTING & APPLICATIONS
卷 32, 期 10, 页码 6393-6404

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00521-019-04146-4

关键词

Finite element method; Pattern classification; Pattern recognition

向作者/读者索取更多资源

Machine learning has played an essential role in the past decades and has been in lockstep with the main advances in computer technology. Given the massive amount of data generated daily, there is a need for even faster and more effective machine learning algorithms that can provide updated models for real-time applications and on-demand tools. This paper presents FEMa-a finite element machine classifier-for supervised learning problems, where each training sample is the center of a basis function, and the whole training set is modeled as a probabilistic manifold for classification purposes. FEMa has its theoretical basis in the finite element method, which is widely used for numeral analysis in engineering problems. It is shown FEMa is parameterless and has a quadratic complexity for both training and classification phases when basis functions are used that satisfy certain properties. The proposed classifier yields very competitive results when compared to some state-of-the-art supervised pattern recognition techniques.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据