4.7 Article

Bioluminescence resonance energy transfer-based imaging of protein-protein interactions in living cells

期刊

NATURE PROTOCOLS
卷 14, 期 4, 页码 1084-1107

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41596-019-0129-7

关键词

-

资金

  1. Canadian Institutes for Health Research (CIHR) [FDN148431]
  2. CIHR
  3. Fonds de la Recherche du Quebec-Sante (FRQ-S)
  4. FRQ-S.M.B

向作者/读者索取更多资源

Bioluminescence resonance energy transfer (BRET) is a transfer of energy between a luminescence donor and a fluorescence acceptor. Because BRET occurs when the distance between the donor and acceptor is <10 nm, and its efficiency is inversely proportional to the sixth power of distance, it has gained popularity as a proximity-based assay to monitor protein-protein interactions and conformational rearrangements in live cells. In such assays, one protein of interest is fused to a bioluminescent energy donor (luciferases from Renilla reniformis or Oplophorus gracilirostris), and the other protein is fused to a fluorescent energy acceptor (such as GFP or YFP). Because the BRET donor does not require an external light source, it does not lead to phototoxicity or autofluorescence. It therefore represents an interesting alternative to fluorescence-based imaging such as FRET. However, the low signal output of BRET energy donors has limited the spatiotemporal resolution of BRET imaging. Here, we describe how recent improvements in detection devices and BRET probes can be used to markedly improve the resolution of BRET imaging, thus widening the field of BRET imaging applications. The protocol described herein involves three main stages. First, cell preparation and transfection require 3 d, including cell culture time. Second, image acquisition takes 10-120 min per sample, after an initial 60 min for microscope setup. Finally, image analysis typically takes 1-2 h. The choices of energy donor, acceptor, luminescent substrates, cameras and microscope setup, as well as acquisition modes to be used for different applications, are also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据