4.8 Article

Coupling of Phosphate-Imprinted Mesoporous Silica Nanoparticles-Based Selective Enrichment with Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry for Highly Efficient Analysis of Protein Phosphorylation

期刊

ANALYTICAL CHEMISTRY
卷 88, 期 2, 页码 1447-1454

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.5b04343

关键词

-

资金

  1. National Science Fund for Distinguished Young Scholars [21425520]
  2. National Natural Science Foundation of China [21275073]
  3. Ministry of Science and Technology of China [2013CB911202]

向作者/读者索取更多资源

Protein phosphorylation is a major post-translational modification and represents a ubiquitous mechanism for the cellular signaling of many different biological processes. Selective enrichment of phosphopeptides from the complex biological samples is a key step for the mass spectrometric (MS) analysis of protein phosphorylation. Herein, we present phosphate-imprinted mesoporous silica nanoparticles (MSNs) as an ideal sorbent for selective enrichment of phosphopeptides and an off-line combination with matrix-asisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) for highly efficient analysis of protein phosphorylation. The phosphate-imprinted MSNs were prepared according to a newly reported strategy called dual-template docking oriented molecular imprinting (DTD-OMI). The prepared molecularly imprinted mesoporous material exhibited several significant merits, such as excellent selectivity toward phosphopeptides, tolerance to interference, fast binding equilibrium, and large binding capacity, which made the molecularly imprinted mesoporous material an ideal sorbent for selective enrichment of phosphopeptides. Using beta-casein as a representative phosphoprotein, highly efficient phosphorylation analysis by the off-line platform was verified. Phosphorylation analysis of a nonfat milk sample was also well demonstrated. Because of their highly desirable properties, the phosphate-imprinted MSNs could find more applications in the analysis of protein phosphorylation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据