4.3 Article

Gastric Parietal Cell and Intestinal Goblet Cell Secretion: a Novel Cell-Mediated In Vivo Metal Nanoparticle Metabolic Pathway Enhanced with Diarrhea Via Chinese Herbs

期刊

NANOSCALE RESEARCH LETTERS
卷 14, 期 -, 页码 -

出版社

SPRINGEROPEN
DOI: 10.1186/s11671-019-2908-z

关键词

Triangular silver nanoplates; Magnetic nanoparticles; Au nanoclusters; Au nanorods; Goblet cells; Parietal cells intestinal excretion; CBD ligation

资金

  1. National Foundational Basic Research Project of China [2017YFA0205301, 2015CB931802]
  2. National Nature Scientific foundation [81327002]
  3. China Postdoctoral Science Foundation [2017M621486]
  4. Shanghai Municipal Commission of Economy and Information Technology Fund [XC-ZXSJ-02-2016-05]

向作者/读者索取更多资源

Up to date, the way in which metal nanoparticles are cleared in vivo has yet to be elucidated well. Herein, we report a novel intestinal goblet cell-mediated in vivo clearance pathway to remove metal nanoparticles. Typical metal nanoparticles such as triangular silver nanoplates, magnetic nanoparticles, gold nanorods, and gold nanoclusters were selected as representative examples. These metal nanoparticles were prepared, characterized, and injected via tail vein into a mice model with common bile duct (CBD) ligation. The feces and urines were collected for 7days to be followed by the sacrifice of the mice and collection of the intestinal and gastric tissues for further analysis. The results showed that all four selected metal nanoparticles were located inside the goblet cells (GCs) of the whole intestinal tissue and were excreted into the gut lumen through the secretion of intestinal GC. Moreover, triangular silver nanoplates and gold nanorods were located inside the gastric parietal cells (PCs). Importantly, nanoparticles did not cause obvious pathological changes in intestinal tissues. In this study, we confirmed that the blood corpuscles are involved in the GCs secretion pathway. Furthermore, we found that the secretion of nanoparticles from intestinal GCs and PCs is accelerated by diarrhea induced via Chinese herbs. In conclusion, metal nanoparticles such as triangular silver nanoplates, magnetic nanoparticles, gold nanorods, and gold nanoclusters can be cleaned away by intestinal GCs and PCs. This novel pathway of in vivo clearance of metal nanoparticles has a great potential for future applications such as new drug design and development, nanoparticle-based labeling and in vivo tracking, and biosafety evaluation of in vivo nanoparticles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据