4.8 Article

New Generation of Moire Superlattices in Doubly Aligned hBN/Graphene/hBN Heterostructures

期刊

NANO LETTERS
卷 19, 期 4, 页码 2371-2376

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.8b05061

关键词

hBN encapsulated graphene; moire superlattice; three-layer moire pattern; superlattice Dirac point; twistronics

资金

  1. Swiss Nanoscience Institute (SNI)
  2. ERC project TopSupra [787414]
  3. European Union [696656]
  4. Swiss National Science Foundation
  5. Topograph
  6. ISpinText FlagERA network
  7. OTKA [FK-123894]
  8. Bolyai Fellowship
  9. Marie Curie grant
  10. National Research, Development and Innovation Fund of Hungary within the Quantum Technology National Excellence Program [2017-1.2.1-NKP-2017-00001]
  11. MOST [107-2112-M-006-004-MY3]
  12. Elemental Strategy Initiative
  13. CREST, JST [JPMJCR15F3]
  14. Swiss NCCR QSIT
  15. European Research Council (ERC) [787414] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

The specific rotational alignment of two-dimensional lattices results in a moire superlattice with a larger period than the original lattices and allows one to engineer the electronic band structure of such materials. So far, transport signatures of such superlattices have been reported for graphene/hBN and graphene/graphene systems. Here we report moire superlattices in fully hBN encapsulated graphene with both the top and the bottom hBN aligned to the graphene. In the graphene, two different moire superlattices form with the top and the bottom hBN, respectively. The overlay of the two superlattices can result in a third superlattice with a period larger than the maximum period (14 nm) in the graphene/hBN system, which we explain in a simple model. This new type of band structure engineering allows one to artificially create an even wider spectrum of electronic properties in two-dimensional materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据