4.7 Article

New avenues for thermal inversions in atmospheres of hot Jupiters

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stz751

关键词

opacity; radiative transfer; methods: numerical; planets and satellites: atmospheres; planets and satellites: composition

资金

  1. Science and Technology Facilities Council (STFC), UK

向作者/读者索取更多资源

Thermal emission spectra of hot Jupiters have led to key constraints on thermal inversions (or 'stratospheres') in their atmospheres with important implications for their atmospheric processes. Canonically, thermal inversions in hot Jupiters have been suggested to be caused by species such as TiO and VO which have strong visible opacity to absorb incident starlight. We explore two new avenues for thermal inversions in hot Jupiters, exploring both the visible and infrared opacities in their atmospheres. First, by exploring a range of metal-rich species we find that four species (AlO, CaO, NaH, and MgH) provide visible opacities comparable to TiO/VO and can cause strong inversions with reasonable abundances. Secondly, we show that a low infrared opacity caused by a low H2O abundance, e.g. through a C/O similar to 1, can also lead to strong thermal inversions even with low abundances of the visible absorbers mentioned above. We find that increasing the C/O ratio towards unity requires almost 2 orders of magnitude lower abundances for the visible absorbers in order for an inversion to form. Finally, we explore the thermal inversion inWASP-121b and find that it can be explained by all the visible absorbers listed above for different C/O ratios. Our study demonstrates the importance of both the refractory and volatile species in governing the physicochemical processes in hot Jupiter atmospheres. Spectroscopic observations in the visible have the potential to detect the newly proposed refractory species that can cause thermal inversions in addition to TiO and VO.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据