4.6 Article

Sulfide (Na2S) and Polysulfide (Na2S2) Interacting with Doxycycline Produce/Scavenge Superoxide and Hydroxyl Radicals and Induce/Inhibit DNA Cleavage

期刊

MOLECULES
卷 24, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/molecules24061148

关键词

hydrogen sulfide; polysulfides; doxycycline; oxytetracycline; tetracycline; superoxide; hydroxyl radical; DNA cleavage; EPR spectroscopy; (center dot)cPTIO radical

资金

  1. Slovak Research & Development Agency [APVV-15-0371, APVV-17-0384, APVV-15-0565]
  2. VEGA Grant Agency of the Slovak Republic [2/0079/19, 1/0026/18, 2/0053/19, 2/0014/17]

向作者/读者索取更多资源

Doxycycline (DOXY) is an antibiotic routinely prescribed in human and veterinary medicine for antibacterial treatment, but it has also numerous side effects that include oxidative stress, inflammation, cancer or hypoxia-induced injury. Endogenously produced hydrogen sulfide (H2S) and polysulfides affect similar biological processes, in which reactive oxygen species (ROS) play a role. Herein, we have studied the interaction of DOXY with H2S (Na2S) or polysulfides (Na2S2, Na2S3 and Na2S4) to gain insights into the biological effects of intermediates/products that they generate. To achieve this, UV-VIS, EPR spectroscopy and plasmid DNA (pDNA) cleavage assay were employed. Na2S or Na2S2 in a mixture with DOXY, depending on ratio, concentration and time, displayed bell-shape kinetics in terms of producing/scavenging superoxide and hydroxyl radicals and decomposing hydrogen peroxide. In contrast, the effects of individual compounds (except for Na2S2) were hardly observable. In addition, DOXY, as well as oxytetracycline and tetracycline, interacting with Na2S or other studied polysulfides reduced the (center dot)cPTIO radical. Tetracyclines induced pDNA cleavage in the presence of Na2S. Interestingly, they inhibited pDNA cleavage induced by other polysulfides. In conclusion, sulfide and polysulfides interacting with tetracyclines produce/scavenge free radicals, indicating a consequence for free radical biology under conditions of ROS production and tetracyclines administration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据