4.7 Article

Selective Cytotoxicity to HER2 Positive Breast Cancer Cells by Saporin-Loaded Nanobody-Targeted Polymeric Nanoparticles in Combination with Photochemical Internalization

期刊

MOLECULAR PHARMACEUTICS
卷 16, 期 4, 页码 1633-1647

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.molpharmaceut.8b01318

关键词

nanobody; targeting; polymeric nanoparticles; photochemical internalization; saporin; PLGA

资金

  1. Consejo Nacional de Ciencia y Tecnologia (CONACyT), Mexico [384743]

向作者/读者索取更多资源

In cancer treatment, polymeric nanoparticles (NPs) can serve as a vehicle for the delivery of cytotoxic proteins that have intracellular targets but that lack well-defined mechanisms for cellular internalization, such as saporin. In this work, we have prepared PEGylated poly(lactic acid-co-glycolic acid-co-hydroxymethyl glycolic acid) (PLGHMGA) NPs for the selective delivery of saporin in the cytosol of HER2 positive cancer cells. This selective uptake was achieved by decorating the surface of the NPs with the 11A4 nanobody that is specific for the HER2 receptor. Confocal microscopy observations showed rapid and extensive uptake of the targeted NPs (11A4-NPs) by HER2 positive cells (SkBr3) but not by HER2 negative cells (MDA-MB-231). This selective uptake was blocked upon preincubation of the cells with an excess of nanobody. Nontargeted NPs (Cys-NPs) were not taken up by either type of cells. Importantly, a dose dependent cytotoxic effect was only observed on SkBr3 cells when these were treated with saporin-loaded 11A4-NPs in combination with photochemical internalization (PCI), a technique that uses a photosensitizer and local light exposure to facilitate endosomal escape of entrapped nanocarriers and biomolecules. The combined use of saporin-loaded 11A4-NPs and PCI strongly inhibited cell proliferation and decreased cell viability through induction of apoptosis. Also the cytotoxic effect could be reduced by an excess of nanobody, reinforcing the selectivity of this system. These results suggest that the combination of the targeting nanobody on the NPs with PCI are effective means to achieve selective uptake and cytotoxicity of saporinloaded NPs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据