4.3 Article

Peripheral and central oxidative stress in chemotherapy-induced neuropathic pain

期刊

MOLECULAR PAIN
卷 15, 期 -, 页码 -

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/1744806919840098

关键词

Oxidative stress; chemotherapy; chemotherapy-induced peripheral neuropathy; neuropathic pain; paclitaxel; cisplatin

资金

  1. NIH [R01 NS031680]

向作者/读者索取更多资源

Chemotherapy-induced peripheral neuropathy (CIPN) is an adverse side effect of many anti-cancer chemotherapeutic treatments. CIPN often causes neuropathic pain in extremities, and oxidative stress has been shown to be a major contributing factor to this pain. In this study, we determined the site of oxidative stress associated with pain (specifically, mechanical hypersensitivity) in cisplatin- and paclitaxel-treated mouse models of CIPN and investigated the neurophysiological mechanisms accounting for the pain. C57BL/6N mice that received either cisplatin or paclitaxel (2 mg/kg, once daily on four alternate days) developed mechanical hypersensitivity to von Frey filament stimulations of their hindpaws. Cisplatin-induced mechanical hypersensitivity was inhibited by silencing of Transient Receptor Potential channels V1 (TRPV1)- or TRPA1-expressing afferents, whereas paclitaxel-induced mechanical hypersensitivity was attenuated by silencing of A beta fibers. Although systemic delivery of phenyl N-tert-butylnitrone, a reactive oxygen species scavenger, alleviated mechanical hypersensitivity in both cisplatin- and paclitaxel-treated mice, intraplantar phenyl N-tert-butylnitrone was effective only in cisplatin-treated mice, and intrathecal phenyl N-tert-butylnitrone, only in paclitaxel-treated mice. In a reactive oxygen species-dependent manner, the mechanosensitivity of A delta/C fiber endings in the hindpaw skin was increased in cisplatin-treated mice, and the excitatory synaptic strength in the spinal dorsal horn was potentiated in paclitaxel-treated mice. Collectively, these results suggest that cisplatin-induced mechanical hypersensitivity is attributed to peripheral oxidative stress sensitizing mechanical nociceptors, whereas paclitaxel-induced mechanical hypersensitivity is due to central (spinal) oxidative stress maintaining central sensitization that abnormally produces pain in response to A beta fiber inputs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据