4.7 Article

Determination of insect infestation on stored rice by near infrared (NIR) spectroscopy

期刊

MICROCHEMICAL JOURNAL
卷 145, 期 -, 页码 252-258

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.microc.2018.10.049

关键词

Chemometrics; Classification; Partial least squares discriminant analysis (PLS-DA); Soft independent modeling of class analogies (SIMCA); Near infrared (NIR) spectroscopy; Infested rice

向作者/读者索取更多资源

Among grains, rice is one of the most widely consumed cereals in the world; it represents a staple food in great part of Asia and Africa, and it is also broadly diffused in America and Europe. One of the main issues of storing rice is to protect it from animal attacks; in particular, it is prone to insect infestation. Despite all the attempts made to avoid it (developing new physical barriers, traps and repellants), often food pests manage to break into granary and parcels, contaminating stored commodities. As a consequence, possible infestations must be continuously checked by producers and/or retailers. Different methods have been developed to detect insects in stored commodities, and, despite some of them demonstrated to perform well, they present the substantial limitation of being destructive. This latter characteristic undoubtedly leads to an obvious loss of product (and consequently, of profit), affecting farmers, retailers, and, finally, consumers. For this reason, the aim of the present work is to develop a methodology for the identification of insect infestation in stored rice by NIR spectroscopy coupled with discriminant and modeling classification methods. In particular, among all the different pests possibly present in granaries, the focus has been on detection of the Indian-meal moth (Plodia interpunctella), because it is considered one of the most common infesting insects. Different samples of rice, both infested and edible, coming from different farmers located in six different Countries (Cambodia, India, Italy, Pakistan, Suriname and Thailand) have been analyzed by NIR spectroscopy. Consequently, two different classification methods, Partial Least Squares Discriminant Analysis (PLS-DA) and Soft Independent Modeling of Class Analogy (SIMCA) have been applied in order to distinguish among infested and edible samples. In particular, PLS-DA allows correctly classifying 95.6% of the edible 97.5% of the contaminated samples (on the external validation set), whereas the SIMCA model, built only for the category of non-contaminated individuals, resulted highly specific (about 97%) but poorly sensitive on the test specimens. This latter approach (SIMCA) provided better predictions (in particular, in terms of sensitivity) when separate individual models were built subdividing samples in agreement with their country of origin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据