4.7 Article

Comparative Genomics, Siderophore Production, and Iron Scavenging Potential of Root Zone Soil Bacteria Isolated from 'Concord' Grape Vineyards

期刊

MICROBIAL ECOLOGY
卷 78, 期 3, 页码 699-713

出版社

SPRINGER
DOI: 10.1007/s00248-019-01324-8

关键词

Rhizosphere function; Chrome azurol S (CAS) enrichment; Microbial cheating; Grapevine microbiome; Pseudomonas genomics; Grapevine nutrition

资金

  1. Washington State Concord Grape Research Council
  2. Washington State University BioAg program
  3. USDA/NIFA through Hatch project [1014527]

向作者/读者索取更多资源

Iron (Fe) deficiency in crop production is a worldwide problem which often results in chlorosis in grapevines, particularly in calcareous soils. Siderophores secreted by microorganisms and Strategy II plants can chelate Fe and other metals in soil solution, and siderophore-Fe complexes can then be utilized by plants and microbes. Plants may also shift rhizosphere conditions to favor siderophore-producing microbes, which can increase plant available Fe. Between-row cover crops (barley, rye, wheat, wheat/vetch) were planted as living mulch to address grapevine chlorosis by enhancing soil health in two vineyards in central Washington. The objectives of the current study were to (1) enrich for siderophore-producing organisms from within the indigenous rooting zone community of 'Concord' grapevines, and (2) perform comparative genomics on putative siderophore producing organisms to assess potentially important Fe acquisition-related functional domains and protein families. A high-throughput, chrome azurol S (CAS)-based enrichment assay was used to select siderophore-producing microbes from 'Concord' grapevine root zone soil. Next-generation whole genome sequencing allowed the assembly and annotation of ten full genomes. Phylogenetic analysis revealed two distinct clades among the genomes using the 40 nearest neighbors available in the public database, all of which were of the Pseudomonas genus. Significant differences in functional domain abundances were observed between the clades including iron acquisition and metabolism of amino acids, carbon, nitrogen, phosphate, and sulfur. Diverse mechanisms of Fe uptake and siderophore production/uptake were identified in the protein families of the genomes. The sequenced organisms are likely pseudomonads which are well-suited for iron scavenging, suggesting a potential role in Fe turnover in vineyard systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据